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Abstract 

As planners and their environments become increasingly complex, planner behavior becomes 
increasingly difficult to understand. We often do not understand what causes them to fail, so that 
we can debug their failures, and we may not understand what allows them to succeed, so that 
we can design the next generation. This paper describes a partially automated methodology for 
understanding planner behavior over long periods of time. The methodology, calkd Dependency 
Interpretation, uses statistical dependency detection to identify interesting patterns of behavior 
in execution traces and interprets the patterns using a weak model of the planner’s interaction 
with its environment to explain how the patterns might be caused by the planner. Dependency 
Interpretation has been applied to identify possible causes of plan failures in the Phoenix planner. 
By analyzing four sets of execution traces gathered from about 400 runs of the Phoenix planner, 
we showed that the statistical dependencies describe patterns of behavior that are sensitive to the 
version of the planner and to increasing temporal separation between events, and that dependency 
detection degrades predictably as the number of available execution traces decreases and as noise 
is introduced in the execution traces. Dependency Interpretation is appropriate when a complete 
and correct model of the planner and environment is not available, but execution traces are 
available. 

1. Introduction 

AI planners have long been introspective. They sit thinking about whether their actions 
will interact or their plans are efficient, and then they issue a plan. Some planners execute 
their plans, sometimes before planning is complete. The introspective nature of planners 
can make it difficult for us to understand why they act as they do, especially when 
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planning and acting are interleaved, and even more so when the planner is responsive 
to a dynamic environment. Although we know how our planners are designed, and we 

can record their behavior, we frequently have trouble connecting the two. A planner’s 

design includes many interacting components, and actions and events in the environment 

combine to produce complex execution traces. To understand planner behavior, we must 

represent the internal workings of a planner and its external execution traces in a way 
that skips a staggering amount of detail and permits us to predict and explain the effects 
of modifications to the planner, its tasks, and its environment. 

Our approach to understanding planner behavior is to find statistical regularities in 

execution traces and then use a weak model of the planner to explain the regularities. 

First, we find dependencies among actions-unexpectedly frequent or infrequent co- 
occurrences. Dependencies arise for many reasons, most very mundane. For example, 
one action might frequently follow another in an execution trace because a frequently- 
used subplan includes both actions in a strict order. Some dependencies, however, alert 

us to problems; for example, a long sequence of obstacle-avoidance actions suggests 

that the planner has become trapped. To explain dependencies in an execution trace, 

mundane or otherwise, we find out which plans were being executed during the trace, 
and we search the plans for structures that often result in co-occurrences of actions, such 

as a strict linear ordering between actions. When we have found all such structures, we 
use them to index a library of explanations of the dependencies. All these steps are 

completely automated or semi-automated, and they have been applied to help us debug 

the failure-recovery component of the Phoenix planner [ 121. 
It is straightforward to find statistical dependencies in execution traces, and only 

slightly more difficult to identify relationships, such as overlap, between dependencies. 
However, most dependencies signify nothing of interest. The contribution of this paper 

is to show how weak knowledge about a planner and its environment can be used to 

interpret dependencies. Our approach is not to explain particular fragments of execution 

traces in terms of detailed histories of internal and external states, but, rather, to explain 
statistical tendencies, over many planning episodes, in terms of general structures in 

plans. 

I. 1. Related research 

Much of the research effort into understanding planner behavior has focused on plan 
failures, in particular, understanding why plans fail so that the plan and the planner 
can be debugged. Researchers have taken two general positions on plan and planner 
debugging. One is that bugs or failures can be anticipated by looking at the structure 

of plans, the other approach is to uncover pathologies by simulating plan execution or 
actually executing plans. Sussman’s HACKER is the earliest example of the first approach 
[ 191: critics look at the structure of a plan at each level of its development and detect 

potential problems (and opportunities), which inform the next level of plan development. 
Instead of simulating execution to discover bugs, HACKER could recognize structures that 
would lead to bugs. For several years, researchers built planners to identify and satisfy 

increasingly complex constraints among actions; again, without actually simulating plan 
execution [ 181. 
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Many subsequent efforts relied on simulation or execution, however. Hammond’s 
CHEF [ lo] simulates execution to produce an execution trace of the plan that includes 
relationships between plan actions and resulting states. CHEF chains backward through 
the execution trace to determine the steps that caused a failure, classifies the failure 
cause based on the explanation of what happened and indexes into a set of general 
repair strategies to fix the plan to avoid the observed failure. Like CHEF, Simmons’ 
GOFUXUS [ 161 debugs plans by simulating them with a causal model. GORDIUS traces 
plan assumptions by regressing desired outcomes (values of states) through a causal 
dependency structure (generated through simulation of the plan) and identifying mis- 
matches. The system then repairs the faulty assumptions with one of a set of general 
repair strategies. Both Hammond’s and Simmons’ approaches assume that the simulator 
has a correct model of the domain; the approaches differ in the kinds of flaws they 
detect and the strategies they apply to repair the faults. Related efforts, all of which 
rely on causal models of the planner, include Hudlicka and Lesser’s work on diagnosing 
failures during execution [ 141, and Birnbaum et al.? proposal to enhance model-based 
diagnosis of plans [ 31. 

Most of the research addresses debugging plans, rather than debugging the planner. 

While the two are related (after all, explaining why a plan would fail is a step toward 
explaining why a planner should not favor such a plan), little has been done on planner 
debugging. The most notable exception is Hammond’s CHEF, which learned from its 
plan failures. CHEF would remember repaired plans and the bugs found in them so that 
subsequent planning could use the newly modified plans and account for the bugs found 
previously. Others have exploited the idea of model-based explanation of failures, bugs 
and errors that arise in execution traces to learn new plans (e.g., [ 251) . 

Our position is an amalgam of the structural and simulation/execution approaches 
focused on debugging the planner. We think it is too difficult to debug a planner by 
identifying an individual bug and explaining how it arose in terms of a history of states, 
variable bindings, environmental events and other details. Instead, we rely on statistical 
dependencies to point us to pieces of plans, and we look for structural features of those 
pieces that might explain the dependencies. After we have made some modifications, 
we test whether our explanations were correct by executing plans and seeing whether 
particular dependencies disappear or are reduced. Our approach has some parallels in 
software testing and program analysis. For example, Bates and Wileden [l] developed 
a language for describing salient abstractions of a system’s behavior; a module monitors 
the system’s behavior and extracts event traces based on the desired abstractions. Gupta 
describes a knowledge-based system for selectively collecting and analyzing traces of 
interprocess messages [ 91. In both of these systems, a human programmer must examine 
the resulting traces and localized failures to determine why the software failed and to 
debug it. As in our statistical approach, a technique for hardware fault diagnosis, called 
correspondence analysis, classifies failure modes into “causes” by analyzing contingency 
tables of system test results [ 151. As in our knowledge-based approach, the DAACS 
(Dump Analysis And Consulting System) takes a snapshot of a particular type of fatal 
program error (the contents of a minidump) and matches information from the dump 
to a belief network of canonical diagnoses [ 41. The result is a set of hypotheses about 
the source of the failure. 
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Most research in AI debugging explains particular failures in order to debug a plan; 
most research from software testing addresses finding patterns of behavior in order to 
debug a program. Our approach combines the two to explain patterns of behavior over 
time in order to debug a program, the planner. In particular, we use a statistical technique 
(called dependency detection) to identify patterns of behavior followed by a knowledge- 
based interpretation phase to construct explanations of how the planner produced those 
behaviors. The next two sections will describe the statistics and their interpretation. 

2. Dependency detection 

In this section we will describe how to find statistical dependencies in execution traces. 
A dependency is an unexpectedly frequent or infrequent co-occurrence. For example, let 
A, B and C be actions in a plan, and consider the execution trace 

BABCCCBBCBABABCABAC. 

One thing you will notice is that A almost never occurs without B following it, imme- 
diately (only the last occurrence of A is followed by C). We could represent this with 
a contingency table where the first action in the subsequence identifies the row and the 
second action identifies the column. 

B E Totals 

A 4 1 5 

E5 X 3 10 13 

Totals 7 11 18 

The table shows that the subsequence AB occurred four times and the subsequence 
of A followed by something other than B (denoted fi) occurred just once. In addition, 
the table shows 3 occurrences of D and 10 occurrences of m. Apparently, the odds 
of seeing B as the second element in a two-element subsequence depends on whether 
the first element is A. If the first element is not A, then the odds of seeing B are 3:10, 
whereas the odds are 4:l if the first element is A. In other words, the presence of A 
appears to make B more likely. This impression might be erroneous: the execution trace 
is short, the numbers in the contingency table are small, and the apparent relationship 
between A and B might be no more than an accidental pattern in a random sequence 
of letters. Statistical tests of contingency tables tell us the probability that apparent 
relationships, such as the dependency between A and B, are due to chance. (We will 
not describe the underlying probabilistic justification for these tests, here, but see [7, 
Chapter 21.) 

The most common test of contingency tables is the chi-square test [ 171, but we will 
use the closely-related G test because it is additive, as described later. The test statistic 
for a contingency table is: 

G = 2 C fij In 
cells 

(1) 
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where fij is the number of occurrences, or frequency, in the cell iJ and fij is the 
expected frequency for cell ij. Expected frequencies can be arrived at two ways: they 
can be specified extrinsically (as we might specify that the expected frequency of males 
to females in a sample is one to one) or they can be calculated from the contingency 
table under the assumption that the row and column variables are independent. In the 
first case, the G test is a test of goodness of fit to an extrinsic frequency distribution; 
in the second, it is a test of independence. Dependency detection is based on tests of 
independence. 

Expected frequencies for tests of independence are derived from row and column 
sums. In the table, above, the total numbers of occurrences of B and B are 7 and 
11, respectively, so our best estimate of the population probabilities of B and B are 
7/(7+11) and 1 l/(7+1 l), respectively. By the same logic, our best estimates of the 
population probabilities of A and A are 5/ (5+13) and 13/ (5+ 13), respectively. Now, 
if the occurrence of B is independent of the precursor A, then the probability of the 
sequence AB is just the product of the probabilities of A and B. That is, assuming 
independence, Pr(AB) = Pr(A) x Pr(B) = (5/18) x (7/18). The expected frequency 
of AB is the probability of AB times 18, the number of items in our contingency table. 
This product, (5/18) x (7/18) x 18 simplifies to (5 x 7)/18. In general, the expected 
frequency for a cell in row i and column j, is fij = fi. f.j/ f l .9 where fi. and f .j are 
the totals for row i and column j, respectively, and f.. is the sum of all the cells. But 
remember: this formula gives the expected frequency for cells under the assumption that 
the column factor is independent of the row factor. 

Equation ( 1) simply sums the deviations between the expected frequencies and the 
actual frequencies in a contingency table. The larger the value of G, the less we be- 
lieve the independence assumption. Substituting expected and actual frequencies for our 
contingency table into Eq. ( 1) , above, we obtain: 

Gz2b1n($) +lln($) +3ln($) +lOln($)] =5.007. 

When this value is referred to a chi-square distribution with one degree of freedom, 
we find that the probability of attaining a result greater than or equal to G, under the 
assumption that the occurrence of B is independent of the occurrence of A, is no more 
than 0.0265. Thus, if we claim that B depends on A, then the probability of being wrong 
is less than three in 100. 

The G test for independence tells us whether the ratio of B to B is significantly 
different in one row of the contingency table than in another. Thus, it is sometimes 
called a heterogeneity test because it tells us whether the ratios of cell frequencies in 
each row are heterogenenous. In our example, heterogeneity is significant. 

Although the dependency between A and B is probably not spurious, it is not the 
only dependency in the execution trace, and is perhaps not as easy to explain as other 
dependencies that might subsume it. Note, for example that the longer subsequence 
B*B occurs four times, three of which have A in place of the wildcard *. * Perhaps the 

*We have used the symbol * to designate a single wildcard symbol. 
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10 603 90 10 603 90 10 603 90 

Fig. 1. An example of a dependency between A and B, where the dependency does not depend on the previous 
action. 

execution trace is telling us that B tends to be followed after an intervening action by 

itself, and, by chance, A was the intervening action three times out of four. The question 
is whether B*B subsumes AB, that is, whether AB occurs primarily as a subsequence 

of BAB, or whether, instead, AI3 has some independent existence. Subsumption is one 
of the relationships we must consider when we look at longer sequences of actions. 

For example, if the execution trace includes an unexpectedly large number of sequences 
BAB, then we must consider three possibilities: 

( 1) There is a dependency between A and B, and the dependency does not depend 

on the preceding action, B. 
(2) There is a dependency between B and B separated by one action, and the 

dependency does not depend on the intervening action, A. 

(3) There is a dependency between B, A and B 
An example of the first kind is shown in Fig. 1. The lower levels of the tree rep- -- 

resent the four two-action sequences we considered earlier: AB, AB, AB, B, and 

the upper level represents three possible precursors, A, B and C, of these sequences. 

With a tree like this we can see whether a dependency between A and B itself de- 

pends on a precursor. In Fig. 1, at least, the odds of seeing B after A are 1:6, whereas 
the odds of seeing B after x are 1:30, and these ratios do not depend on which 
action precedes the two-action subsequences. In other words, Fig. 1 shows an un- 

expectedly high co-occurrence of A and B that is not subsumed by AAB, BAB or 

CAB. 
Fig. 2 shows an example of the second kind, an A*B dependency that does not depend 

on the intervening action that we substitute for the wildcard. In this case, the odds of 
seeing A*B are 1:6, whereas the odds of seeing x*B are 1:30, and these odds do not 
depend on whether the intervening action is A, B or C. 

Sometimes, dependencies can cancel each other out. Fig. 3 shows a case in which 
there is a strong propensity for B to follow AA in the three-action sequence AAB, and 
a strong propensity for B to not follow A in the sequences BAB and CAB. However, 
the overall contingency table shows no dependency between A and B: the probability 
of B following A is 0.5 and the probability of B following x is also 0.5. 
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B B 

10 60 10 Ml0 60 3 903 SO3 So 

Fig. 2. An example of a dependency between A and B separated by one action, where the dependency does 
not depend on the intervening action. 

24 6 132 132 7 1966 66 5 11 66 66 

Fig. 3. Although the contingency table shows no dependency between A and B, B shows a strong propensity 
to follow A in the sequence AAB, but the opposite effect holds for the sequences BAB and CAB. 

26 162 2 246 2 9 4 13 2 9 3 12 

Fig. 4. The AB dependency appears only when the previous action is A. 
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Lastly, Fig. 4 shows a case in which the AB dependency shows up only when the 
first actions of a three-action sequence are AA, and this dependency dominates the data. 
There is no evidence in Fig. 4 for a general two-action AB dependency, because B does 
not appear to depend on A in three-action sequences BAB and CAB. 

With G tests, we can differentiate the cases illustrated in Figs. 1, 2, 3 and 4. To do 
so, we must be able to test both two-item dependencies (e.g., *AB) and three-item 
dependencies (e.g., AAB). When it doesn’t matter which item we substitute for *, 
only two-item dependencies will be significant. When dependencies cancel each other, 
only three-item dependencies will be significant. Usually, though, two- and three-item 
dependencies will all be significant. Let us show how to build contingency tables to test 
all these cases. We begin with the contingency table in Fig. 4, which we reproduce here 
as Table 1. 

Table 1 
The Fig. 4 contingency table 

Ii mi 

Totals 39 450 

Because Eq. ( 1) is a sum of differences between expected and actual frequencies, we 
can partition it into components. For instance, we can calculate one G statistic for the 
*A row of Table 1, and another G statistic for the *x row, and then add these statistics 
together to get G for the whole table. Noting that the row sums are 210, 279, and the 
column sums are 39, 450, respectively, we can calculate expected frequencies as above. 
The G statistic for the first row is: 

The G statistic for the second row is calculated the same way: 

The sum of these statistics is 20.28, which is exactly what we get when we apply 
Eq. ( 1) to run a test of independence on the whole contingency table: 

Gp = 2 
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There’s nothing magical about this u&&i&y property: it is just a consequence of 
Eq. ( 1) being a sum. However, decomposing G tells us that G,A = 9.40 and G,, = 10.88, 
that is, each row contributes roughly equally to the total G value of 20.28. Said dif- 
ferently, the frequencies 30 and 180 deviate from their expectations only a little less 
than do the frequencies 9 and 270. For convenience, Gp will denote the G statistic for 
Table 1; the P stands for “pooled” or “packed”, in contrast to other G statistics we’ll 
calculate later. 

Comparing Gp = 20.28 to a chi-square distribution with one degree of freedom, we 
find it is highly significant. This means the occurrence of B or B depends on whether it 
is preceded by *A or *x, but it says little about possible effects of the first item in the 
precursor, denoted *. For instance, we have not tested the possibility, suggested by the 
tree in Fig. 4, that the dependency between B and *A reflects the strong propensity of 
B to follow AA (in 162 of 188 cases), whereas the tendency of g to follow BA or CA 
appears much weaker, due to relatively few cases. To test three-item dependencies, we 
must build slightly different contingency tables. 

Note that a row in a contingency table might itself summarize another contingency 
table, the structure of which is lost when it is summarized. In Fig. 4, for example, 
the frequencies of *Al3 and *ti summarize the frequencies of AAB and m, BAB 
and BAi%, and CAB and CAB. We can “unpack” the 30 occurrences of *AB into 
26 occurrences of AAB and two occurrences each of BAB and CAB. Similarly, we 
can unpack the 180 occurrences of *@. We could also unpack the second row of 
Table l-the nine occurrences of *B and the 270 occurrences of *B-but it isn’t 
necessary for our immediate purposes. Unpacking the first row will suffice, and it yields 
Table 2. 

Table 2 
The “unpacked” contingency table 

B ix 

AA 26 162 

BA 2 9 

CA 2 9 

*x 9 270 

Totals 39 450 

The total G statistic for Table 2 will necessarily exceed Gp = 20.28, calculated 
above. Remember that G measures heterogeneity, the degree to which the ratios of 
frequencies in rows differ. In general, heterogeneity for a table increases when a row 
is unpacked, because the row is replaced by two or more new rows that are apt to be 
heterogeneous. Only when the new rows contain frequencies in exactly the proportions 
of the unpacked row, will heterogeneity remain constant (we will see an example 
shortly). The G statistic for Table 2, denoted G~J for “unpacked”, is easily computed 
withEq. (1): 



134 

Gu=2 

A.E. Howe, RR. Cohen/Artificial Intelligence 76 (1995) 125-166 

As expected, Gu > Gp, but not by much. We will let Gu = G~J - Gp = 0.287 denote 
the increase in heterogeneity due to unpacking. Because Gu is so small, we know that 
the new rows in Table 2, AA, BA and CA, differ little amongst themselves-the ratios 
of their frequencies are similar. In fact, the ratio in row AA is 26:162, or roughly 1:6; 
whereas the ratios for rows BA and CA are 1:4.5. The raw row frequencies, however, 
are very different: Row AA boasts 188 occurrences of B or h, whereas the other rows 
contain just 11 occurrences each. The contributions of each row to Gu reflect these 
differences: 

We have derived three results: First, a strong dependency exists between the precursors 
*A and *A, and the subsequent occurrence of B or B (Gp = 20.28). Second, the 
heterogeneity introduced by unpacking *A into AA, BA and CA is negligible (Gu = 
0.287). Third, the precursor AA contributes more to Gu than BA or CA does. How 
might we interpret these results? 

We can see in Table 1 that B is more likely to follow *A than *A: the probability of 
observing B is l/6 following *A and l/30 following *A. We don’t know whether 

( 1) the presence or absence of A in the precursor is responsible, or 
(2) the presence of absence of a particular item that occurs in place of * is respon- 

sible, or 
(3) an interaction between a particular substitution for * and the subsequent item in 

the precursor is responsible. 
In fact, our results support the third interpretation: B follows *A more frequently than 
*A, so we know that the presence or absence of A as the second item in the precursor 
increases the likelihood of observing B. But this is not the whole story, Unpacking the 
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*A row of Table 1 affects heterogeneity little; the ratios of frequencies in the AA, BA 
and CA rows are similar, and if they are similar to each other, they must also be similar 

to the ratio of frequencies in the *A row. In other words, the propensity of B, say, to 

follow *A is similar to its propensity to follow AA, BA or CA. This suggests that the 
first item in a two-item precursor has little influence on the occurrence of B when the 

second item in the precursor is A. However, this ignores the fact that 188 of the 210 
cases in the *A row of Table 1 are actually AA precursors, while BA and CA contribute 

very little. Thus, we conclude that the precursor AA strongly affects the occurrence of 

B; while the effects of the precursors BA and CA are consistent (observing B is more 

likely) but weaker. The conclusion that *A influences B is too general; we see now that 

AA influences B. 
We are ready to quantify these conclusions. Keep in mind that G statistics are additive. 

As a result, we can construct a summary of our results like this: 

Statistic 

G 

GAA 

%A 

&A 

G*X 

Value Significance 

20.28 significant 

7.327 significant 

1.18 not significant 

1.18 not significant 

10.88 significant 

GJ 20.567 significant 

GH 0.287 not significant 

The first result, Gp = 20.28, tells us *A influences B, and if none of the more 
specific results were significant, we would conclude that *, the item that precedes A, 

doesn’t matter. This test, on a 2 x 2 table, has one degree of freedom. The row and 
column sums are fixed because we use them to estimate cell frequencies, as is the 
total sum for the table. Thus, if a row contains C columns, only C - 1 are free to 
vary; the last being constrained to “make up” the row sum. Similarly, a column of R 

rows has R - 1 degrees of freedom. Thus an R x C table has (R - 1) x (C - 1) 
degrees of freedom. The result for the 4 x 2 unpacked table, Gu = 20.567, has three 
degrees of freedom and is also significant. It tells us that the ratios of row frequen- 

cies in Table 2 are significantly different. Because G is additive, we can see which 
of the four rows in Table 2 are responsible for the heterogeneity. Clearly, rows AA 
and the unpacked row *A contribute most. The rows BA and CA are insignificant: 

when we ask of each row whether its cell frequencies are different from their ex- 
pectations, as measured by G, the answer is no. Each test on a row has C - 1 de- 
grees of freedom, because the row sum (which is used to estimate expected frequen- 

cies) constrains one of the frequencies in a row. The tests of GAA, G~A, GCA, and 

G,, each have one degree of freedom because our contingency tables have only two 

columns. 
We get very different results when we calculate G statistics for other execution 

traces besides the one summarized in Fig. 1. For example, here are the statistics for 
Fig. 1: 
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Statistic 

GP 

GAA 

GBA 

GCA 

G*x 

Value Significance 

9.40 significant 

3.133 not significant 

3.133 not significant 

3.133 not significant 

10.88 significant 

Gv 
GH 

9.4 

0 

significant 

not significant 

The interpretation of these results is that there is a significant dependency between 
A and B in two-action subsequences, and this effect is identical (& = 0) for all 
substitutions-A, B and C-for *. In fact, none of the individual three-action dependen- 
cies is significant; for example, the ratio of the occurrences of B to B in the sequences 
AAB and ti is not significantly different than the expected population ratio ( GAA = 
3.133). In short, when the second action of a precursor is A, the first action does not 
influence the occurrence of B. 

It turns out that the situation in Fig. 2 yields identical G statistics and has a very 
similar interpretation to the case in Fig. 1. The only difference is that we look for 
differences due to the precursors AA, AB and AC instead of the precursors AA, BA, 
CA. However, the ratio of B to B is not influenced by whether the first two actions are 
AA, AB or AC; in all cases, the ratio is 1:6. Thus, & = 0 and (;p = Er = 9.4. We 
conclude that the data show a dependency between A and B, even when another action 
intervenes, and the intervening action does not influence this dependency. 

Finally, consider the situation in which dependencies cancel each other out, as shown 
in Fig. 3. The G statistics for this case are: 

Statistic 

GP 

GAA 

GBA 

&A 

GGi 

Value Significance 

0 not significant 

11.565 significant 

5.754 significant 

2.306 not significant 

0 not significant 

GJ 
GH 

19.625 significant 

19.625 significant 

When the precursor is AA, then the ratio of B to B in the subsequent action is 
significantly different from its expectation ( GAA = 11.565). Similarly, if the precursor 
is BA, then the ratio of B to B is also significantly different from its expectation 
(GBA = 5.754). If the precursor is CA, no effect is evident (GCA = 2.306). Despite 
strong effects of two precursors, no effect is evident when all the data are pooled 
(Gp = 0). This is because there are really two three-item dependencies that cancel each 
other out. The first entails that AA is likely to be followed by B; the second says BA 
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is likely to be followed by B. These opposing tendencies yield a highly heterogeneous 
table when the *A row is unpacked (Gn = 19.625), but of course they are invisible in 
the *A row itself (G*A = 0). We note in passing that the test of Gn has two degrees 
of freedom because three rows result from unpacking the *A row but their sums are 
constrained by the *A row sum. An alternative formulation would be to run an ordinary 
test of independence on a table with rows AA, BA and CA: this will produce Gn, and 
clearly has two degrees of freedom. 

In sum, for any subsequence XYZ of three successive actions in an execution trace, 
we can differentiate three cases: Z depends on Y, irrespective of action X (Fig. 1) ; Z 
depends on X, irrespective of action Y (Fig. 2) ; and the dependency between Z and Y 
itself depends on X (Figs. 3 and 4). 

3. Interpretation 

Dependencies, by themselves, raise more questions than they answer. They might 
suggest relationships that we did not expect or they might only confirm what we knew 
before or be spurious. Interpretation distinguishes these situations and explains the 
relationships, suggested by the dependency, in terms of the planner and its environment. 

Interpretation has two parts: identifying what plans are involved in the dependencies 
and constructing explanations of how the plans might have produced the dependencies. 
In contrast to detecting dependencies, both parts rely on knowledge about the planner 
and its environment. 

3. I, Identifying suggestive plan structures 

For the first part of interpretation, we search for the means of producing the dependen- 
cy-how one event or action can influence the occurrence of another. The purpose of 
this step is to identify which planning structures, knowledge and mechanisms influence 
particular events (or suggest the means for a dependency). If one event depends on 
another, there must be a medium through which they interact; we search for it in the 
description of the plans. We can also detect unusually low co-occurrence of events, but 
at present, we do not try to explain any lack of desired co-occurrence. 

Determining what might produce the dependencies requires knowledge about the 
planner and its environment. Yet, this conflicts with the goal of minimizing our reliance 
on a model of the planner and the environment. Our solution is to supplement the 
available execution information and knowledge structures available within the planner 
with a weak model of the planner and its interaction with the environment. 

The process of identifying suggestive plan structures starts by selecting one depen- 
dency for attention. We select one dependency for pragmatic reasons. First, at present, 
the search for suggestive structures is supported by a set of Lisp functions, one for 
each type of suggestive structure; it would be tedious to run the functions for every 
dependency. Second, even if this step and the next were fully automated, the designer 
would have to wade through a lot of information about the structures and explanations. 
Focusing attention on a single dependency reduces the possible deluge of information. 
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One must be careful in selecting a dependency for interpretation. Spurious dependen- 
cies can be most easily avoided by selecting strong dependencies: those that have a low 

probability of being due to chance and that are based on many instances. Determining 

whether the dependency is of interest is a judgment call; only the designer can decide 
that the dependency is unexpected and significant. Dependencies can also be ranked by 
their tenacity (i.e., whether they appear impervious to changes in environmental condi- 
tions) and their utility (e.g., the desirability of the observed behavior or the value of 
the observed outcomes). 

Having selected a dependency for attention, it remains to associate each depen- 

dency with actions in plans, and find structural descriptions of the interaction between 

the actions in the dependency. Roughly speaking, we first situate the dependency in 

the plans and then determine how the precursor might have influenced the dependent 
event. 

Associating dependencies with actions 
First, we need to locate the dependency in the plans to localize what produces the 

behavior. Dependencies are composed of plan actions and environment events. To deter- 
mine the role of the planner in producing the dependencies, we need to relate both parts 

to the planner. Plan actions need only be associated with the plans in which they can 

appear. Environment events are detected, directly or indirectly, by plan actions; typically, 
plan actions initiate sensor activation or processing or at least relate sensory information 

to on-going plans. Consequently, each dependency can be mapped to sets of actions that 
specify all the ways that the events in the dependency are detected, and all the ways the 

plan actions in the dependency appear in plans. 
The mapping from the dependency to the plans demarcates the portion of the plan 

space to be searched for possible interactions. For example, Fig. 5 shows a plan that 

includes both the predecessor from the dependency (Action P) and the antecedent 
(Action A) from a dependency (solid lines indicate temporal precedence, dotted lines 

represent a hierarchical relationship). From this point in the interpretation process, we 
no longer concentrate on the dependency, but rather on the parts of plans between the 

precursor and the antecedent of the dependency. 

Finding suggestive structures 
Having identified the actions that were involved in the dependency (call them de- 

pendency actions), we still do not know what they have to do with each other. We 
could search the planner’s short- and long-term memory to find out. The problem with 
searching short-term memory (e.g., all the plan expansions, variable bindings, and his- 
tories of environmental events) is that, even if it could somehow be recorded for all 
the runs of the planner, the detail would be overwhelming and largely irrelevant. The 
problem with searching long-term memory (e.g., the planner’s representation of plans, 
actions and strategies for planning) is that plans are described with the wrong amount 
of detail for inferring behavior over time-too much procedural detail about how actions 
are instantiated in plans and too little detail about how plan fragments and actions can 
be included in different plans. 
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Fig. 5. A dependency has been mapped to two actions in a plan. The shaded region indicates the portion of 
the plan possibly relating to the dependency. 

We supplement the available declarative plan representation with structural knowl- 
edge about how the planner combines plan fragments and actions to form executable 
plans and what relationships are formed between the plan fragments as a result of the 

combinations. The suggestive plan structures are language-based idioms that coordi- 

nate actions in plans and describe shared commitments to a course of action or shared 
expectations about the world. They are called suggestive structures because they sug- 

gest means by which events and the planners actions might interact. In many cases, 
such structures are included in plan languages because they support generalizing plans 
beyond specific variable instantiations (so promoting plan reuse), help coordinate the 

efforts of separate plans or agents, and constrain decision making (hopefully improving 

efficiency). 
To identify suggestive plan structures for particular dependencies, we search the 

parts of plans demarcated by dependencies (as in Fig. 5) for structural relationships 
between the two actions. These structures are of three basic types: temporal, control and 
data interactions. In this case, the temporal structure is that the antecedent necessarily 
follows the predecessor; the suggestive structure is called Sequential Actions, in which 

one action is guaranteed to follow another in some plan. One cannot easily distinguish 
control and data relationships in this figure. A control structure is one in which some 
action determines whether a later action will be included in the plan. For example, the 
hierarchical relationship between actions in plans constitute a control structure because 

the expansion of the parent determines which actions are included at the lower level; 

this suggestive structure is called Selection Constructs, in which one action adds another 
to the plan. A data interaction structure is one in which plan actions share information. 
For example, some plan actions may set values of plan variables used by other plan 
actions; this structure is called Shared Variables, in which one action sets some variable 
and another uses it. 

While most planners construct plans with these three types of structural relationships, 
the set of suggestive structures depends fundamentally on the plan language and the 

ways the planner incorporates information about the environment into its plans. The set 
of suggestive structures for one planner will be described in Section 4.2. 
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3.2. Explaining how suggestive structures produce dependencies 

The second part of interpretation is to find explanations of how the suggestive struc- 

tures might have produced the observed dependencies. The explanations amount to brief 

stories of what might have happened: how suggestive structures might combine to cause 

dependencies. They do not precisely determine the cause of the dependency, but rather 
are hypotheses about the source of the observed dependency. 

The explanations are intended to explain the dependencies, not explain how the 

precursor caused the antecedent. This may seem a subtle distinction, but it is not. 

Dependencies are co-occurrences, not causal relationships. Two events may co-occur 
because they share the same cause or because they occurred together by chance. The 

explanations emphasize ways that the events can co-occur, rather than how one can 

cause the other. 
An example of an explanation of a dependency between parts of different plans is 

Resource Contention, which describes what happens when several plans vie for the 

same resource with only one or none able to acquire or access it. Resource contention is 

common when multiple agents or plans compete for the same limited resources and can 
occur in plans without forced temporal sequencing or controlled resource management. 

An example of an explanation for a dependency between actions and the environment is 
Overcommitment, which describes why a plan may be inappropriate, and perhaps need to 

be retracted, when the environment changes in particular ways. Suggestive structures that 

suggest overcommitment are strong temporal sequences, data dependencies between the 
environment and plan actions, and control decisions based on possibly old information 

about the environment. 
The result of the interpretation phase is a set of hypotheses about how the planner 

might have produced the observed dependencies. Given a set of suggestive structures and 

explanations, this phase may not find any explanations or may find too many; it is not 

guaranteed to find the “correct” one. Just as when human programmers try to describe 
the behavior of a program, this interpretation phase will be limited by its knowledge of 

the planner. 

4. One application: Failure Recovery Analysis 

We have applied dependency interpretation to understand why plans fail in Phoenix. 
This section describes how the target behavior (i.e., plan failure) and the target en- 
vironment and planner (i.e., the Phoenix system which includes the environment and 

the planner) have led to a specialized form of dependency interpretation called Failure 
Recovery Analysis (or FRA). The purpose of Failure Recovery Analysis is to identify 
and explain cases in which plans may influence, exacerbate or cause failure; in other 

words, to assist in debugging the planner. 
Failure recovery is the process by which the planner recognizes and repairs a plan 

or execution time failure. Most planners that operate in dynamic environments include 
some form of failure recovery. Even reactive systems include reactions for responding 

to less desirable situations. 
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5. Modify Planner 

1. Run Planner 
Execution Traces 
F->R->F->R->F 

Explanations 
Dependencies 
F-F,R-F,FR-F 

Suggestive 
Structures 

fig. 6. The cycle for Failure Recovery Analysis: the designer iteratively debugs the planner by testing the 

planner, interactions. 

We chose to focus on failure recovery as the aspect of the planner and environment to 
record and analyze for several reasons. First, failure recovery influences which failures 
occur. Minor changes in the design of failure recovery produce significant changes in 
the number and types of failures (as we discovered in a series of experiments with 
Phoenix [ 131). Second, failure recovery uses plans in ways not explicitly foreseen by 
its designers, but not forbidden or prevented by them either. Failure recovery repairs 
plans by adding or replacing portions of them. As a result, the plan may include plan 
fragments that are juxtaposed in orders and contexts not envisioned by the designers. 
Consequently, failure recovery may test the limits of the planner. 

FRA proceeds as an iterative process in which the designer tests the planner, interprets 
the dependencies, and modifies the planner based on the dependency interpretation (as 
in Fig. 6). The process continues until the designer is satisfied with the resulting planner. 

The designer starts by running the planner in its environment. The Phoenix system 
automates this first step; an automated experiment controller varies the environment 
within pre-defined ranges and collects execution traces of which failures occurred and 
how they were repaired. An example execution trace is: 

&j -+ R, -+ F+ + Rp + Fn,, + R_yp + Fip + R, + Fnrs 

where F’s are failure types and R’s are recovery methods. The subscripts indicate 
individuals from a set, so F,,, means failure of type ner. 

Second, the execution traces are searched for dependencies between recovery efforts 
and failures. These dependencies tell the designer how the recovery actions influence the 
next failure 3 that occurs and how one failure influences the next. For FRA, dependencies 
consist of combinations of failure types and the recovery actions that repaired them. We 

3 The next failure refers to the failure that appears next in the execution trace. Because the execution trace 

removes time stamps, the temporal separation is unknown; it could be immediate or many hours later. 
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detect dependencies of three types: F-F (failure type followed by the next failure type), 
R-F (recovery action followed by the next failure type) and FR-F (failure type and the 

recovery method that repaired it followed by the next failure). Dependency detection (as 

described by the equations in Section 2) is implemented as Lisp functions that accept a 
list of execution traces as input and return a list of dependencies as output. 

Third, the designer selects one of the dependencies for further attention and tries 
to determine how the planner’s actions might have caused the observed dependency. 

The dependencies are mapped to actions in plans and then the plans are searched for 
suggestive structures that involve the actions and that are known to be susceptible to 

failure. To find suggestive structures, the designer runs a set of Lisp functions that check 
for each of the structures. 

Fourth, the designer matches the suggestive structures for the dependency to a set of 
possible explanations and modifications. At present, this step is not automated; the de- 

signer must look through a set of explanations that are indexed by suggestive structures. 

The explanations and modifications are all described in general terms and are listed 
according to what structures indicate which explanations and modifications. 

At the end of the cycle, the designer chooses the most likely explanation based 
on his or her understanding of the planner and modifies the planner to remove the 

suspected flaw. The cycle begins again with the designer running the planner. Next time 
around, the designer can search for more flaws to fix and can determine whether the 

modification achieved the desired effect, that is, the observed dependency disappeared 

and the incidence of failures changed for the better. 
In contrast to other approaches to debugging, FRA is a procedure applied by a human 

designer, rather than a fully automated system. The designer decides where to focus 
attention and ultimately how to fix the planner to repair the bug. FRA trades power 

for generality. Because it uses a weak model, inherent in its suggestive structures and 

explanations, it can localize a broad range of bugs and should be appropriate for many 

planners, but it cannot guarantee that it will find all bugs or even find the actual cause 

of failure. 

4.1. Phoenix: the target planner and its environment 

The Phoenix system4 [ 81 serves as the laboratory for this application of dependency 

interpretation. As shown in Fig. 7, Phoenix provides the simulated environment, an 
agent architecture with a set of plan knowledge bases for each type of agent, and an 

experimental interface for automatically controlling experiments and collecting data. Its 
environment is forest fire fighting in Yellowstone National Park. 

The goal of forest fire fighting is to contain fires as efficiently as possible. Forest fires 
spread in irregular shapes, at variable rates, as a function of ground cover, elevation, 
moisture content, wind speed and direction, and natural boundaries (e.g., bodies of water 
and large roads). Fires are contained by removing fuel from their paths, causing them 

4 “Phoenix” refers to the entire system: simulator and all the components that comprise the agents, including 

the planner. Whenever possible, we use “Phoenix planner” to distinguish the planner from the other parts of 

the system. 
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Fig. 7. Diagram of the separate processes that comprise the Phoenix system. The arcs between the processes 
indicate a transfer of data between processes. 

to burn out, called building fireline. One agent, the fireboss, coordinates the activities of 

field agents, bulldozers, to surround the fire with fireline, exploiting natural boundaries 
whenever possible. Other agents, watchtowers, gasoline carriers, and helicopters, support 
the activities of the fireboss and bulldozers by gathering information and delivering 

gasoline to refuel agents in the field. 
Fig, 8 shows the interface to the simulator. The map in the upper part of the display 

depicts Yellowstone National Park north of Yellowstone Lake. Features such as wind 
speed and direction are shown in the window in the upper left, and geographic features 

such as rivers, roads and terrain types are shown as light lines or grey shaded areas. Four 
bulldozers are building fireline around a fire near the center of the figure. A watchtower 

is visible at the top near the center. 
All Phoenix agents have the same agent architecture, which consists of sensors, ef- 

fectors, reflexes and a planner. Sensors perceive the state of the environment local to 
the agent, and effecters change the environment. Together, reflexes and the planner 

form a two-layer control system. Each layer provides a particular level of compe- 

tence. Reflexes address changes that occur faster than the cognitive component can 

respond, and the planner coordinates actions and avoids detrimental plan interactions. 

The planner plans by skeletal refinement; when new tasks are added to the timeline 
(a structure for developing and monitoring plans in progress), the planner searches 

its plan library for partially detailed, uninstantiated plans appropriate to the task and 
conditions of the environment. Plans are further expanded and instantiated as needed 
(e.g., as plans are executed or as information becomes available about the state of the 
environment). 

By almost any measure, the Phoenix environment is challenging for AI planners. As a 
result, Phoenix plans fail for lots of reasons. The environment can change unpredictably, 
so if the planner bases a plan on slow or no change in the environment, the plan 

will fail. Phoenix agents are limited in their abilities to sense the environment; so 
plans can fail because they are based on obsolete or uncertain information. Phoenix 
plans also fail because they include bugs and have not been tested in all possible 
situations. 
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Fig. 8. View from Phoenix simulator of bulldozers fighting a fire 

4.2. Phoenix-specific knowledge for FRA 

FRA uses three kinds of domain-specific knowledge: types of failures and recovery 
actions, suggestive structures, and explanations. At present, the Phoenix planner recog- 
nizes 11 types of failures and applies eight recovery actions to repair those failures. 
The failures types are listed in Table 3; the recovery actions in Table 4. While the 
failure types are obviously specific to the Phoenix planner, the recovery actions, sugges- 
tive structures and explanations are designed to generalize beyond Phoenix. We believe 
that many of them would apply to and characterize other planners as aptly as they do 
Phoenix, and we are in the process of acquiring other planners and analyzing them for 
whether these structures apply. Following Sussman’s lead on plans [ 191, we envision 
defining canonical bugs and fixes for many classes of planners. 

Suggestive structures 
Suggestive structures are determined by the plan language. The Phoenix plan language 

is fairly impoverished in its representation of goals and effects of actions; it is largely a 
procedural language in which most of the reasoning is opaque. The suggestive structures 
for the Phoenix planner exploit what information is available in the structure of the plans. 
The following is a listing of the suggestive structures acquired so far for the Phoenix 
planner. 
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Table 3 
Failure 

CCP 

ccv 

Can’t Calculate Path: The planner cannot find a safe path between two points on the map. 

Can’t Calculate Variable: This failure type is a catchall for being unable to assign a value to some 
variable. 

CFP 

FNE 

NER 

NRS 

Can’t Find Plan: Planning operates by searching a plan library for one plan that fits the requirements 
of its context in the plan and is appropriate to the current state of the environment. This failure 
type is detected when no plan meets these criteria. 

Fire Not Encircled: Each fire-fighting plan includes, as its last step, a check that the fire really has 
been contained; this failure is detected when the fire is not found to be fully encircled by fireline. 

Not Enough Resources: Fire-fighting plans estimate the resources required to contain particular 
fires; this failure is detected when the fire is too large for available resources. 

No Remaining Segments: This failure indicates a mismatch in allocation of work to individual 
agents. 

PRJ 

PTR 

RU 

IP 

ZBT 

Can’t Calculate Projection: This failure is detected when the fire size cannot be projected for some 
future time, due to bugs in code or anomalies in available information. 

Can’t Calculate Path to Road: Normally, paths are calculated between two points; one variant on 
path calculation is to calculate a path from a point to the nearest road. 

Resource Unavailable: Resources can be assumed to be available during initial planning, but 
actually are unavailable when the plan later attempts to allocate them. 

Insufficient Progress: Envelopes detect differences between observed and expected progress in 
plans; this failure is detected when the observed progress is inadequate. 

Zero Build Time: In examining a particular fire, the planner may find that the fire is already 
contained and thus requires no fireline. 

Table 4 
Recovery actions for the Phoenix planner 

pes for the Phoenix planner 

WATA 

RV 

RA 

SA 

SP 

AR 

RP 

Wait and try the failed action again. 

Re-calculate one variable used in the failed action. 

Re-calculate all variables used in the failed action. 

Substitute a similar plan step for the failed action. 

Substitute one projection action for another which has failed. 

Assign additional resources to a plan. 

Abort the current plan and re-plan at the parent level (i.e., the level in the plan immediately above 
this one). 

RT Abort current plan and re-plan at the top level (i.e., redo the entire plan). 

Shared Variables: One action sets some variable and another uses it. Shared vari- 
ables are vulnerable to failure for a variety of reasons: changes in value not getting 
propagated to all uses, mismatch in assumptions between how the value is set and 

used, and confusion about the units of a variable. 
Shared Resources: Two actions allocate and use the same resource. Separate plans 
may access the same resources. Resources refer both to physical resources such 
as bulldozers and fuel carriers and also to some types of data structures (global 
instance variables and shared frames). The Phoenix planner does not arbitrate 
resource use beyond first come first served. 
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l Sequential Actions: One action is guaranteed to follow another in some plan. 
Sequential orderings are vulnerable in that the progression from one action to 
the next is inexorable (barring the intercession of replanning). This structure is 

extremely weak as information about flaws in the planner; it is merely useful for 
determining whether one action typically precedes another in a plan as opposed to 
being completely unrelated. 

l Unordered Actions: Two actions are unordered by the plan. Actions without or- 

dering constraints in plans indicate that the designer expects the actions to be 

opportunistically interleaved by the planner at run time. Typically, the actions are 

independent (meaning their effects should be unrelated), but if for some reason 

(e.g., mistake on designer’s part or modification by failure recovery) they are not 
independent, then the resulting order may produce interactions. 

l Iteration Constructs: Multiple actions are added to the plan by the same decision 

action. Like most programming languages, the Phoenix plan language supports 

several iteration constructs. The assumption underlying several of these constructs 

is that we wish to take similar action over and over; for example, the language 
includes a do-list construct, which adds to the plan some number of the same 
action, each with a different variable binding. Because each of these is the same 

action, they share many of the same assumptions about the environment; if one 

action is vulnerable, the rest may be as well. 
l Repeated Actions: One action is included in many diflerent plans and gets used in 

many diflerent contexts. Some planning actions are repeated many times in one or 
more plans. For example, path calculation actions are executed every time some 
agent is moved from one place to another. These oft repeated actions can be difficult 
to program (and so tend to be programmed incorrectly) because it may be difficult 

to predict in advance all the possible situations in which they may be used. 
l Environment References: One action senses the environment and passes the result 

onto another; or two actions share assumptions about the state of the environment. 

Some plan actions sense the environment and calculate variables or make planning 
decisions based on the condition of the environment. If the decision or calculation 

assumes constancy of environmental conditions, then those calculations or decisions 

may be vulnerable to failure. 

Explanations 

Dependencies may result from one action causing a later failure or from incidental 
relations in plans. The catalog of explanations for the Phoenix planner identifies some of 

the structural influences on failure in Phoenix planner. As with the suggestive structures, 

this list is not intended to be complete, but rather to serve as a starting point for 
cataloging the ways that failure dependencies can be produced in Phoenix and other 
planners. 

l Overly Constrained Environment Assumptions: A sequence of plan actions assumes 

constancy of environmental conditions and thus is vulnerable to changes in those 

conditions. Actions that assume stability in the environment may account for a 
higher frequency of certain types of failures: those resulting from changes in the 
environment. 



A.E. Howe, l?R. CohedArtiJScial Intelligence 76 (199.5) 12.5-166 147 

A suggestive structure that suggests this explanation is environment references. 
Given this explanation, some planner modifications that might remove the depen- 

dency are: add monitoring actions to update the model of the environment more 
often, or reorder actions to coordinate actions that require the environment to stay 

the same. 
l Implicit AssumptionxTwo actions make different assumptions about the value of 

a plan variable to the extent that the later action’s requirements for successful 
execution are violated. Some plan expectations are explicit, as in plan variables, 

and some are implicit, as in the assumptions underlying the values of the plan 

variables. 

Some suggestive structures that suggest this explanation are: sequential actions 
combined with shared variables, unordered actions combined with repeated ac- 

tions, or iteration constructs combined with shared variables. Some modifications 
to the planner that might remove the dependency are: add new variables to the 

plan description to make the assumptions explicit or change the plans so that the 

incompatible actions are not used in the same plans. 
l Resource Contention:Several plans may vie for the same resource with only one or 

none able to acquire or access it. Resource contention is common when multiple 

agents or plans vie for the same limited resources. For the most part, the Phoenix 
planner treats on-going plans as independent, which minimizes the search for inter- 

actions and allows for reuse of plans, but makes resource contention more likely. 

A suggestive structure that suggests this explanation is parallel actions combined 
with shared resources. Some modifications to the planner that might remove the 

dependency are: institute a reservation policy (e.g., when a decision is made based 

on resource availability, immediately reserve the resources), create protection in- 

tervals so that plans cannot be interleaved between resource decisions and use, or 
sequence the contending plans. 

l 0vercommitment:A set of actions may be determined so far in advance that the 
planner cannot change the sequence to accommodate change. Plan designers trade- 

off efficiency and flexibility by moderating the amount of coordination built into 
plans. Sometimes the plan may be overly constrained such that it may discover 

information about the state of the world or may fail early on, but be so structured 
that the information cannot influence later decisions. 

Some suggestive structures that suggest this explanation are: parallel actions 
combined with shared variables or parallel actions combined with shared resources. 

Some planner and recovery modifications that might remove the dependency are: 

make the shared assumptions explicit so that the knowledge gleaned by one can be 
used in decision making by the other or change the planning so that a failure in 
one subplan means that a different choice is made for the later plan (i.e., do not 
try to do the same thing if it failed before). 

l Temporal Sequencing in Plans: When actions are strictly ordered in plans, failure 
occurrences may match the order. A failure cannot occur if the action that detects 
it does not get executed. A failure that is detected early in the plan cannot follow 
one detected by later actions unless the plan is somehow restarted or several plans 
of the same type are interleaved. 
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A suggestive structure that suggests this explanation is sequential actions. Given 
this explanation, a planner modification that might remove the dependency is to 

replace the temporal structure with more opportunistic control. 

l High Base Frequency: Planning actions that have a high base frequency have more 
opportunity to detect failure. Some planning actions are repeated many times in 
a plan. This can lead to a high base frequency for failures detected by these fre- 
quent actions and may lead to spurious dependencies or dependencies due to strict 
ordering effects. 

A suggestive structure that suggests this explanation is repeated actions. A plan- 
ner modification that might remove the dependency is to create different versions 
of the action for different situations. 

l Band-Aid Solutions:A recovery action may repair the immediate failure, but that 
failure may be symptomatic of a deeper problem, which leads to subsequent fail- 
ures. In this sense, it causes the next failure because it makes it inevitable that 

some other symptom will be detected. 
Some suggestive structures that suggest this explanation are: R-F dependency 

combined with sequential actions and shared variables, F,R-F, dependency, or 
FR-F dependency combined with unordered actions and environment references. 
Some planner and recovery modifications that might remove the dependency are: 
limit the application of the suspect recovery action, force a replan earlier, add new 

recovery methods to repair the failure, or change the plan structure so that related 

failures can be identified. 
l Downstream Failures: Recovery actions may disrupt the flow of control between 

plan actions so that they cause later failures. The recovery method may alter 
conditions or expectations of subsequent plan actions, thus causing them to fail. 
Recovery may cause later failures by making a poor repair or by not updating all 

plan variables that are related to the repair. 
Some suggestive structures that suggest this explanation are: R-F dependency 

combined with sequential actions, shared variables and a local repair method (R is 
one of WATA, RV, RAV, or SA) or FR-F dependency combined with sequential 

actions and environment references. Some planner and recovery modifications that 
might remove the dependency are: limit the application of the suspect recovery 

action, narrow the scope of the changes made by failure recovery to not produce 
the detrimental side effects or modify the plan description to make explicit the 

relationship between the repair and the subsequent failure. 
l Stealing: A recovery action that significantly mod$es the expectations, constraints 

or assumptions of the plan may preclude a host of related failures, thereby making 
unrelated failures more likely to occur next. When some failures are prevented or 
avoided by relaxing constraints in the plan or updating the internal model to match 

the environment, failures not related to these plan modifications may appear more 
frequent. In effect, the recovery method steals failures from the normal flow causing 

them to be replaced by others. 
Some suggestive structures that suggest this explanation are: R-F dependency or 

FR-F dependency where R is either a replan or a substitution action. The planner 
should not be modified to prevent it because, for the most part, this is a good effect. 
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5. Empirical evaluation 

To determine whether FRA is feasible, we need to know whether the procedure works 

at all; in particular, can it help programmers of the Phoenix planner learn something 
about the Phoenix planner that they did not know before applying FRA? To determine 

whether the technique is useful, we need to assess how much information is gained by 
applying it and how much effort is required to gain that information. In this section, we 

demonstrate that FRA is feasible by applying FRA to the Phoenix planner, and we assess 
the usefulness of FRA by determining what information can be gained from different sets 

of execution traces for the Phoenix planner and by estimating the relationship between 

the amount of effort expended (i.e., how many execution traces are collected) and the 
sensitivity of the underlying statistics. 

5.1. Demonstrating FRA in Phoenix 

To demonstrate the feasibility of the FRA procedure, we applied it to help debug 
the current version of the Phoenix planner. First, we collected execution traces from 94 
experiment trials (which included 968 failures) in which the Phoenix planner fought 

three fires over the course of about 60 simulation hours (we will refer to this set of 
execution traces as the “Base Case”). The fires were set at eight hour intervals and the 

wind speed and direction was allowed to change roughly every hour. 
Second, we ran Lisp functions to analyze the execution traces for statistical depen- 

dencies between recovery efforts and failures. We found 46 dependencies: 15 R-F 
dependencies, 15 F-F dependencies, and 16 FR-F dependencies. From that set, we 

selected one for interpretation: [ RSp, F,] . We selected this dependency because the fail- 
ure is a frequently occurring failure (Fip) that is expensive to repair and the precursor 

includes a failure recovery method that had been previously added to improve recovery 
performance but seemed to be interacting detrimentally with other parts of the plan. This 
relationship (i.e., [R, followed by Fip] ) was observed 52 times in the set of execution 
traces, which suggests that it was a common pattern of behavior for the planner. 

Third, we ran Lisp functions to map the dependency to suggestive plan structures (as 
shown in Fig. 9). The dependency includes a recovery action as precursor, R,, and a 
failure as a successor, Fip. R, transforms a failed indirect attack plan (abbreviated PiO) 
into a repaired plan PA by substituting a different type of fireline projection calculation 
action for the failed one. The Phoenix plan library includes three different actions 

for calculating projections: multiple-fked-shell ( Ap_,,fs), tight-shell (A,.,), and model- 
based ( Ap_mb). RSp replaces one of these with another. Failure FQ, is detected when plan 

monitoring indicates that progress against the fire has been insufficient and not enough 
time remains to complete the plan. Fip is detected by an envelope action (a structure 

for comparing expected to actual progress [ 11 I > called indirect-attack-envelope ( Aen”). 
The three projection calculation actions and the envelope action appear together in three 
different indirect attack plans. All three indirect attack plans include the same suggestive 

structures: Shared Variable and Sequential Ordering. All projection calculation actions set 
the variable attack-projection which is used by the envelope action. The envelope 
action always follows the projection calculation action in the indirect attack plans. 
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Dependency: 

SharedVariable 

Fig. 9. Mapping a dependency to two suggestive smxtures. 

Fourth, we looked up explanations of how the suggestive structures might have pro- 

duced the observed dependency and identified possible modifications to repair the flaw. 
Combinations of suggestive structures lead to many explanations. The two suggestive 
structures found for the dependency [ Rsp, fip] (Shared Variable and Sequential Order- 
ing) underlie two different explanations: Xmplicit Assumptions and Band-aid Solutions. 
The Shared Variable can cause a failure if the substituted projection calculation action 

sets the variable differently than was expected by the envelope action (thus, violating im- 
plicit assumptions of the envelope) ; the projection may not be specified well enough to 
be properly monitored or may violate monitoring assumptions about acceptable progress. 

Alternatively, the recovery action R, could lead to FQ, if the recovery action is repairing 
only a symptom of a deeper failure (i.e., is a band-aid, not a cure); the fire may be 
raging out of control or the available resources may really be inadequate for the task. 

The results of the analysis are one dependency, two suggestive structures and two 
possible explanations for the dependency. At this stage in the FRA procedure, the 
designer decides what to do to change the planner. With FRA, the designer can look 

up stereotypical repairs, but still needs to select one and implement the repair. The 

stereotypical repairs for a band-aid solution are to limit the application of the recovery 
action R, or to add a new recovery action for the failure F&e In this case, the recovery 
action Rsp had been added to improve recovery performance in two expensive failures, 

Fpv and Fner, removing it would set performance back to previous levels. Alternatively, 
adding a new recovery method might produce just as many new dependencies. For these 

reasons, we rejected these modifications as unlikely to be helpful. 
The stereotypical repairs for implicit assumptions were more promising. In particular, 

the most constructive repair seemed to be to make the assumptions of the variable’s 

use explicit by defining additional variables. We checked the projection code (the code 
involving the precursor of the dependency) and envelope code (the code that detects 
the failure type in the dependency) for the assumptions they make about the variable 

that they both use, attack-projection. 

The projection code calculates an estimate or projection of the extent of the fire at 
some point in the future. The three versions of the projection calculation code differ 
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in how they search for projections and in how they estimate the likely performance 
of the resources available to fight the fire (i.e., the combined time building fireline). 
The estimates of resource performance include many factors that are bundled together 
into a summary variable. The envelope code uses the summary variable to construct 

expectations of progress for the plan. 
By examining the code, it became obvious that the performance estimates set by the 

three projection actions differed not only in how they were estimated but also in what 

capabilities were included (e.g., rate of building fireline, rate of travel to the fire, startup 
times for new instructions, and refueling overhead). Because the envelope assumed that 

the summaries reflected only the rate of building fireline, the conditions for signaling 
failures effectively varied among the different projection actions. To accommodate these 

differences, the projection actions were restructured to set separate variables for each 
of the capabilities; the envelope action then combines the separate variables to define 

expected progress. 
As part of the changes just described, a few bugs were detected and fixed in the 

A,,., code (one of the three projection actions used). The bugs almost certainly caused 

some of the Fpe’s previously observed in the data and had led to some projection 
actions being even more optimistic than intended (e.g., one of the activities had been 

estimated in minutes, but treated as seconds, leading to one parameter of the estimate 

being one sixtieth of its desired value). Because the parameters involved in these bugs 
were variables local to the projection code and were not recorded as part of the plan, 

it is unlikely that FRA could have found these bugs in the use of the parameters. 
FRA indicated that the projection code was buggy and suggested one way in which 

it was buggy-that the projection variables were not being set and used consistently. 
Consequently, we fixed these bugs because this was the aspect of the planner that FRA 

indicated needed to be fixed. 

We can tell whether the modifications were effective if the Rsp-F@ dependency is not 

detected in new execution traces and the overall rate of failures decreases. To test the 
modifications, we ran the modified planner in 87 trials in which three fires were set over 
12 hour intervals and analyzed the execution traces for dependencies. The dependencies 

detected from the execution traces for these 87 trials included 12 F-F dependencies, 
12 R-F dependencies and zero FR-F dependencies. The Rsp-l$, dependency was not 

detected in the new execution traces, and the rate of failures went from 0.414 failures 
per hour5 to 0.333 failures per hour (a z test on the differences in mean failures per 
hour yields a significant result, z = -13.11, p < 0.0001). 

The modifications to the planner also resulted in different incidences of each failure 
type. Failure type Fp+ accounted for 20.8% of the failures in the Base Case experiment 

and only 0.3% in the new execution traces. Similarly, the incidence of F,,, (a failure 
type that is also detected during projection calculation) decreased from 16% to 12%, 

and FCC,, decreased from 15% to 12%. Yet, the overall percentage of I$ increased 

from 25% to 42%, and the counts of failures F,, and Fprr in the execution traces 
increased significantly. Table 5 lists the incidence of failures for the Base Case and for 

5 Failures per hour was used as a measure because it was the most general measure of progress across all 

the activities of the agents. 
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Table 5 
Failure counts for the Base Case and the modified planner execution traces 

Failure type Base Case Modified planner 

Number % Number % 

CCP 232 0.151 142 0.125 
ccv 5 0.003 0 0 
CFP 143 0.093 92 0.081 
FNE I 0.005 5 0.004 
1P 381 0.247 415 0.418 
NER 246 0.160 122 0.107 
NRS 3 0.002 15 0.013 

PFR 0 0 2 0.002 

PRJ 321 0.208 1 0.001 

mR 76 0.049 147 0.129 

RDU 122 0.079 129 0.113 

ZBT 4 0.003 7 0.006 

1540 1.000 1137 1 .Ooo 

the traces from the modified planner. Most of these changes in counts for different types 

of failures were probably due to removing the bugs in the code rather than implementing 
the changes to the projection calculation. An optimistic explanation for the increase in 

some failure types is that by removing the cause of some early plan failures (i.e., failures 

that can only be detected early in fire fighting plans), the plans are getting further and 
failures that are detected at later points in the plan are becoming more obvious. Without 

more data, it is difficult to know whether this optimistic explanation is correct. If the 

experiment were enhanced to record a measure of progress in the fire fighting plan when 

a failure is detected, then we might detect a general trend toward more progress. 
This example shows that a designer can apply FRA to help identify and repair flaws 

in a planning system. Based on the dependencies, suggestive structures, explanations and 
modifications that were found while following the procedure for FFL4, we were directed 
to examine and modify one portion of the code for the Phoenix planner. The modified 
planner detected fewer failures than previously and did not exhibit the dependency that 

was to be avoided by the modifications. Because we fixed bugs other than the one 
identified by FRA, it is impossible to conclude that the improvement is due to the 
change motivated by applying FRA. For a system of any complexity, it is virtually 

impossible to analyze code without finding some bugs. FRA pointed us to a source of 

problems, and we thought to fix every problem found there, whether or not it matched 
the explanation selected with the help of FRA. FRA was useful because it led us to 

examine a relationship that had been assumed previously to be correct. 
As another example, we performed another cycle of FXA. First, we collected execu- 

tion traces from 102 experiment trials (which included 1043 failures) under the same 
conditions as before. These new execution traces were collected because considerable 
time intervened between the previous example and this one during which one of the au- 
thors and the Explorer used for the experiment moved from University of Massachusetts 
to Colorado State University. The dependency sets in the new traces are similar (about 
2/3 overlap), but the failure rate is significantly lower (went to 0.261 failures/hour 
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from 0.333 failures/hour), due probably to some general fixes made in the course of 
installing the system in Colorado. 

Second, we searched for dependencies and selected one for attention. We found 23 
dependencies and from that set selected [ Rn, F,,,]. We selected the dependency by 
considering only those based on a reasonable amount of data (all cells in contingency 
table must be at least 5), ranking the dependencies by the value in their upper left 
cell, and then picking the most expensive repair cost of the top five in the ranking. 

So, [ Rn, Fner] is both common and expensive to repair. Third, we found suggestive 
structures for this dependency. Re is a replanning action which aborts the plan in 

progress and searches for a new plan to fight the fire. F,,, is detected during projection 

when the planner discovers that the available resources (the bulldozers) are inadequate 
to contain the fire. The suggestive structures found were: Shared Variables (setting and 
then using the variable describing the fire, also both reference the assessment of available 

bulldozers), Sequential Structure, and Environment References (both examine the state 
of the fire and the current weather conditions). Fourth, we found explanations: Overly 

Constrained Environment Assumptions and Implicit Assumptions. Because the variables 
involved referred to the state of the environment (e.g., the weather and the fire), we 
were inclined to combine the recommendations of the two explanations: make explicit the 

environment assumptions of the replanning decision and coordinate those assumptions 
with the projection code. Our intuition was that because the same criteria had been used 
to select a plan when the fire was first sighted as had been used in replanning, the 

replanning decision might be out of sync with the possibly more demanding state of the 
environment likely to hold during replanning. 

Based on this analysis, we made a set of closely related changes to the Phoenix 

planner. We changed the criteria used to select plans, and we assigned variables based 
on some of the assumptions of the plan selection. Phoenix can select from five general 
fire fighting plans. Of those, two are already used only in extremely limited (easy) 

situations. Although they differed in their flexibility under varying environment condi- 
tions and their reliance on available resources, the remaining three had been chosen 
randomly. The selection criteria were modified so that the most stingy (able to use 

whatever resources were available) was selected when resources were tight, the most 
accurate (estimated many aspects of the state of the world) was selected when condi- 

tions differed considerably from average, and otherwise, one was selected at random. The 
characteristics of the three plans were assessed through pilot experiments, observation, 

and analysis of the code. Additionally, the assumption about the number of bulldozers 
available was made explicit at plan selection time as an assignment of bulldozers to the 
plan. 

We ran the same conditions as before and collected execution traces from 82 ex- 
periment trials. We analyzed the results and found that the [ Rn, Fner] dependency had 
disappeared and the percentage of F,,,, had reduced from 9% of the failures to 1%. 
However, the failure rate increased to 0.346 failures per hour. We have several choices 

at this point: We could back out this change and try a different solution; we could as- 
sume that the change needs to be better tuned and so run more pilot experiments to test 
the selection criteria, or we could examine the dependency set for ones that may have 
been introduced by this change and fix those. The decision is left to the programmer, 
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but in all three cases, dependency detection can be used to assess the results and IXA 
can be used to suggest additional changes. 

5.2. Utility of dependencies 

We assess the utility of PRA by estimating the information gained relative to the effort 
required. We focus on dependency detection because it is the core technique of IRA; 
dependencies are the information that drives the rest of the procedure and the amount of 
effort required is dominated by collecting execution traces. We wished to determine the 
quality of the information: do dependencies capture weak or strong relationships and do 
dependencies summarize abstractly the interaction of the planner and its environment. 

We estimate the information gained by describing how many and of what strength 
dependencies were found in a series of four experiments with Phoenix and by showing 
how the dependencies change as the planner is modified and as the time between the 
precursor and the antecedent is increased. In other words, we show that dependencies 
characterize strong effects and that the dependencies reflect what the planner does 
and how much time passes between the planner’s actions and the dependent event. 
We estimate the effort required to detect dependencies by estimating the sensitivity of 
dependency detection to the amount of data available and the noise in the data and by 
summarizing the amount of computation required. 

Our measurements are based on a set of four sets of execution traces of the Phoenix 
planner, which were gathered during a series of experiments. In the first three experi- 
ments, the failure recovery portion of the Phoenix planner was incrementally modified. 
The third experiment is the Base Case used in Section 5.1, the fourth experiment in- 
volved the modified planner described in the same section. 

5.2.1. Information gained 
As the planner and its environment changes (or is changed), the type and strength 

of dependencies changes as well. Prior to gathering the two sets of execution traces 
described in Section 5.1, we gathered execution traces from two previous versions of 
the planner (these two versions had successively simpler versions of failure recovery) 
and analyzed them for dependencies. 

Amount of information 
If dependency detection discovers too many dependencies, then the designer will 

be swamped with information that by its volume becomes useless. If most of the 
dependencies are strong (meaning the probability that they are due to noise or chance 
is low), then the designer can have more confidence in dependencies as an accurate 
characterization of a relationship between precursor and failure type. 

Different dependencies were detected in the execution traces for each of the four 
versions of the planner. In terms of evaluating whether the designer is likely to be 
swamped in dependencies, it appears that, while the dependencies detected in each 
experiment’s execution traces were different, the number of dependencies detected was 
not overwhelming. The most dependencies detected in any one experiment was 46 for 
the Base Case used in Section 5.1; the fewest dependencies detected was 24. The total 
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Fig. 10. Histogram of p values for all precursor and failure combinations (F-F, R-F and FR-F) in four data 
sets. p values are the probabilities that the G value for a contingency table was due to noise or chance. 

for all four sets of execution traces was 125. To get a sense for how many dependencies 
are likely to be detected, Fig. 10 shows the distribution of p values for four data sets. 
We say that we detect a dependency between a precursor and a failure type if the p 
(probability that G was due to chance) is less than (Y, where (Y = 0.05. As one would 
expect, the overwhelming majority of p values are > LY. In the figure, each column 
is the count of precursor-failure combinations with p between the upper limit of the 
previous column and the limit listed at the bottom of the column; so < 1.0 means the 
count of 0.05 < p < 1.0. 

The strength of a dependency can be measured in terms of the probability that the 
ratios observed for the dependency arose due to chance or noise. The majority of 
the dependencies detected in the four sets of execution traces were well below the (Y 
threshold. In fact, the histogram in Fig. 11 shows that over half of the dependencies had 
p < 0.01, indicating that the dependencies that were detected were highly significant. 

Sensitivity of the dependencies to planner version 
To determine whether the dependencies reflect the changes being made to the planner, 

we tested the overlap in the dependencies detected in the four sets of execution traces. 
Additionally, we tested the temporal persistence of dependencies by analyzing the exe- 
cution traces for dependencies between a precursor and a failure that occurs much later 
in the execution trace. 

The incidence of failure types changed across the four experiments. Consequently, we 
expect the dependencies detected in the execution traces for each experiment to change 
as well. We tested this expectation by comparing the sets of dependencies detected across 
combinations of the experiments and counting the overlap. The results are summarized 
in Table 6. 

The planner used in experiment four is a variant of the planner used in experiment 
three, which is a variant of what was used in experiment two, which is a variant of 
what was used in experiment one. Thus, one would expect adjacent experiments (i.e., 
one and two, two and three, three and four) to share relatively many dependencies, 
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Probability, given G for contingency table 

Fig. 11. Histogram of p values for dependencies. The dependencies were detected in execution traces from 
four experiments. 

Table 6 
Number of deoendencies shared bv combinations of exneriments 

l&2 2&3 3&4 l&3 2&4 l&4 1,2&3 2,3&4 1,2,3&4 

R-F 1 1 4 0 0 0 0 0 0 

F-F 9 5 4 2 2 2 2 2 1 

FR-F 1 1 0 0 0 0 0 0 0 

Totals 11 I 8 2 2 2 2 2 1 

and non-adjacent experiments to share relatively few dependencies. Data from different 
experiments should share dependencies because the dependencies capture the structure of 
some interactions within the planner and between the planner and the environment; thus, 
the more that the planner changes, the more the dependencies should change. In fact, 
the execution traces for the four experiments exhibit just this phenomenon: experiments 
one and two had the most dependencies in common; the full set (one, two, three and 
four) had the fewest in common. 

Sensitivity of the dependencies to temporal separation 
Dependencies represent downstream influences of precursors on later failures. A RsP- 

fiP dependency indicates the RsP influences or makes more likely the occurrence of 
Z$, as the next failure. Detecting “downstream influences” implies that we expect the 
effects of precursors (i.e., failure types and recovery methods) to have some persistence, 
to last long after the actions that detected the failures or repaired them have finished. 
In evaluating whether dependencies capture those downstream influences, we need to 
determine for how long (i.e., how many steps in the execution traces) the precursors 
influence failures downstream. 

FRA detects dependencies between a precursor and the failure that immediately fol- 
lows it. The algorithm was designed to detect dependencies between the precursor and 
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the failure immediately following it for pragmatic reasons-it limited the number of 
patterns that needed to be tested by the detection code. Dependency detection runs G 
tests on all possible patterns of precursors and failures. Thus, the number of patterns 
increases combinatorially as we add earlier failures and recovery methods to the precur- 
sors, making it computationally expensive to consider longer and earlier precursors. 

Practically, we need to know whether we are missing some downstream influences 
when we limit the patterns to include only the previous failure. We can divide this 
concern about missing information into two parts: Should precursors include more than 
just a single pair of a failure and the recovery method that repaired it? Do precursors 
influence failures after the next failure? To answer the first question, we modified 
dependency detection to test much longer patterns, patterns of more than one failure and 
more than one recovery method, and we looked at whether dependencies are detected 
at all as the precursors become longer and more complicated. To answer the second 
question, we modified dependency detection to test dependencies between a failure 
and a much later failure, for example, two, three, or four failures later. As with the first 
question, we looked at whether dependencies still are detected as the temporal separation 
increases between the precursor and the failure. 

FRA tests for dependencies of types F-F, R-F and FR-F for all failures and recovery 
methods that appear in the execution traces. For example, the execution traces for 
experiment 1 contained 10 different failure types and six different recovery methods, so 
there were 600 possible patterns of FR-F or 600 different patterns of length two to be 
tested. Given the number of different failure types in the execution traces and the number 
of different recovery methods, we can calculate the number of possible patterns for any 
length precursor. For example, a precursor of length three (up to RFR-F) produces 
4620 possible patterns: 3600 RFR-F, 600 RF*-F, 360 R *R-F, and 60 R *w-F. The * 
stands for a wild card value, meaning it does not matter what value is in that position 
so long as something in the execution trace appears between the other values. R **-F 
means a particular recovery method R followed by any failure, then by any recovery 
method and finally by a particular failure F. 

Testing all possible patterns up to FRFR-F would require 59,280 tests for the execu- 
tion traces for the first experiment. The execution traces for all four experiments together 
included only 3900 failures (collected over 15,000 simulation hours), which suggests 
that even if computation time were not a concern, the execution traces could not even 
contain all the patterns. So, we need to determine whether it is even worth testing for the 
longer patterns in the execution traces. We did so by modifying the dependency detection 
code to test any length precursor and examining the rates of detection. Table 7 shows 
the results of testing for dependencies with precursor up to length four (i.e., FRFR-F) 
in the execution traces for experiment 1. Clearly, the number of possible combinations 
of failure types and recovery methods quickly outpaces the size of the execution traces, 
but as the length of the precursor increases, the percentage of dependencies detected for 
the patterns found in the execution traces decreases (23% for R-F to 9% for FRFR-F) . 

Table 7 suggests that, as one might expect, the influence of the precursors decays 
over time. A smaller percentage of long precursors are detected as dependencies than 
of short precursors. For example, G/Found (the number of significant combinations 
divided by the number of different combinations found in the execution traces) is 
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Table 7 
Dependency search space for precursors up to FRFR 

Combinations Found G test G/Combinations G/Found 

R-F 60 40 9 0.150 0.23 

FR-F 700 160 36 0.050 0.23 

RFR-F 4620 531 50 0.011 0.09 

FRFR- F 53900 1737 162 0.003 0.09 

Totals 59280 2468 257 - - 

Table 8 
Dependency search space for temporally separated failures. Execution traces are from the first experiment 

Combinations Non-empty G test G/Comb. G/Non-empty 

F-F 760 225 43 0.06 0.19 

F*-F 760 220 20 0.03 0.09 
F **-F 760 207 33 0.04 0.16 
F r**-F 760 199 32 0.04 0.16 

0.23 for the short precursor R and decreases to 0.09 for the longest precursor FRFR; 
G/Combinations (the number of significant combinations divided by the number of 
combinations of the values for F and R) decreases from 0.15 to 0.003, indicating that 
the dependencies account for a small proportion of all the possible long combinations. 

The decrease in percentages suggests that by limiting the length tested to just two, we 
are not significantly limiting the proportion of dependencies found. Yet, the program 

did still detect 162 dependencies of length four, a count considerably higher than the 
9 dependencies found for precursors of length 2. So while the numbers are relatively 
lower, we could still be missing dependencies if we do not test for longer dependencies. 

Alternatively, we can evaluate whether the influence of precursors diminishes over time 

by looking at simpler precursors, just failures, gathered over longer temporal separations. 
The same data set (the earliest set of execution traces) was analyzed for dependencies of 

F,F*-F;,, meaning pairs of a particular failure F, followed by some number of failures 
followed by a particular failure Fy. Table 8 shows the results for temporal separations 
of up to four failures. It appears that as the distance from the precursor to the failure 
increases, the number of patterns decreases slightly and the proportion of significant 

dependencies decreases slightly (19% for F-F and 16% for F *w-F). Because the 

decrease in the proportion of significant dependencies is so small, the only conclusion 
is that we are likely to be missing dependencies by not considering dependencies over 
longer intervals. The future work section describes some proposed approaches to finding 

dependencies over longer intervals. 

52.2. Effort required: sensitivity of dependency detection to size of data set 
The G test is a statistical test, which means that it is sensitive to the amount of data 

available. For the G tests performed as part of dependency detection, the amount of 
data refers to the number of patterns in the execution traces. For example, the execution 
trace, 
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includes five FR-F patterns. The contingency table for the pattern FpqRsp-Fip con- 
structed from this execution trace is shown in Table 9. The total number of patterns is 
five. The ratio for the pattern FpjRsp-Fi,, in the execution trace is 1:l (i.e., the ratio of 
the count of the precursor followed by the target failure to the count of the precursor 
not followed by the target failure) and the ratio for any other precursor ( Fp,.jRsp) being 
followed by the failure (Fip) is 1:2. The difference between those two ratios is not 
sufficient to detect a dependence between the precursor and the failure; a G test on this 
contingency table yields G = 0.236, p < 0.627. If we had 20 times more patterns in the 
execution traces (i.e., 100 patterns in the traces) with the same ratios (i.e., 20:20 and 
20:40), a G test would be significant, G = 4.711, p < 0.03, and a dependency would be 
detected. 

Table 9 
Contingency table for the 
dependency Rsp+,, 

The total number of patterns and the ratios of the patterns in a contingency table 
influences the results of the G test. Imagine that you have a significant contingency 
table (p < cy) , there are two ways to change the table that may change the result (i.e., 
whether p is still less than a): vary the total count of the table (i.e., n) and vary the 
ratios (top row to bottom row). The first change addresses the sensitivity of the test to 
the size of the execution traces; the second addresses the sensitivity to noise: how much 
of a difference is required to detect a dependency no longer? The two changes are not 
independent, but to understand the influence of each, we examine them separately. The 
sensitivity of the test to the size of the execution traces is examined analytically, and 
the sensitivity to noise is examined empirically in this section, 

To determine the effect of the sample size on detecting dependencies, we will examine 
the equation underlying the G test used to detect dependencies, the heterogeneity test. 
The nature of the G test is that the G values for subsets of the sample can be added 
together to get a G value for the superset (this was the property exploited in pruning). 
If the ratios remain the same but the total number of counts in the contingency table 
double, then the G value for the contingency table doubles as well. For example, the 
G value for the contingency table in Table 9 is 0.236; the G value for the contingency 
table with 20 times more patterns is 4.711 or roughly (as close as one gets with round 
off error) 20 times 0.236. 

To explain how this arises, consider an alternative, but mathematically equivalent form 
of the equation for heterogeneity: 

G=2 [aIn +bln (5) - (oih)ln(a+h)] , 
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where a is the count from the upper left of the contingency table, b is the count from the 
upper right of the contingency table, c is the count from the lower left of the contingency 
table, d is the count from the lower right of the contingency table, ~?f = c/(c + d) and 
j+ = d( c + d) . Assuming we hold constant the ratios (a:b and c:d) but vary the total 
count (a + b + c + d), we can replace b with x * a (making a ratio of u:n * a) and c 
with y * d (making a ratio of c:y * c) and simplify the equation to: 

Y 

G=2a[(l +x)ln(l +y) +xln; - (1 +x)ln(l +x)1. (2) 

which illustrates that if we hold the ratios constant (i.e., x and y) and vary only a 
to increase the total, then the value of G increases linearly with increases in a. This 
explanation is valid only for the simple version of G (heterogeneity) used to detect the 
dependencies in the first place. 

Linearity is desirable because the effect of more data is predictable and because it 
tends to reduce the likelihood of surprising results if a few more trials are collected. We 
know that as more execution traces are collected, the more likely we are to detect depen- 
dencies, but that the new dependencies detected are likely to have been borderline before 
the addition of data. The bottom line is that the G test can find strong dependencies 
given execution traces with few patterns, but given more patterns it will also find rare 
dependencies. So if a user of FRA is interested in detecting any dependencies, then a 
few execution traces will be adequate to do so; if the user wishes to find rare or obscure 
dependencies, then it will be necessary to gather more execution traces. The level of 
effort expended in gathering execution traces depends on what kinds of dependencies 
one wishes to find. 

The preceding analysis tells us how G changes if we expend the effort to gather more 
execution traces, but the analysis assumes that the ratios in the contingency table are 
constant. Consequently, we cannot say much about the effect of noise given only a few 
patterns in execution traces. To rephrase the concern, one of the problems with fewer 
patterns in execution traces is that any particular failure may be a random event. Formal 
analysis of this concern is difficult. Instead, we tested the effect of noise empirically 
by inserting random events into the execution traces and testing whether the dependen- 
cies found in the original traces remained. The counts are shown in Table 10. About 
65% of the dependencies remain after introducing noise. This means that 35% of the 
dependencies detected would disappear if a few patterns more or less were included 
in the execution traces. As one would expect, most of the dependencies that were vul- 
nerable to the tweaking were based on execution traces that included few instances of 
the precursor/failure pattern: 23 out of 44 or 52% of the dependencies that disappeared 
were based on contingency tables in which f < 5. The implication of the sensitivity of 
dependency detection to noise in the execution traces is that rare patterns (i.e., patterns 
based on few instances in the execution traces) are especially sensitive to noise and SO 

should be viewed skeptically. 
When evaluating the cost of executing dependency detection, we need to consider 

two factors. First, dependency detection is simple and fully automated; the calculations 
for each test are fast and can be run in batch mode. The computation time required to 
collect the dependencies in the four sets of execution traces was far shorter than the 
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Dependencies remaining after tweaking contingency tables. Contingency tables were tested for sensitivity to 
minor changes in ratios. The table includes the number of dependencies remaining after tweaking over the 
total number of deoendencies found in the execution traces from the four exoeriments. 

Experiment 1 Experiment 2 Experiment 3 Experiment 4 

R-F o/4 418 10/15 II12 
F-F 9113 15119 II15 10/12 
FR-F 517 314 11/16 o/o 

Total 14124 22131 28146 17124 

time required to gather the execution traces in the first place (less than ten minutes 
for dependency detection, but about two weeks for the data collection). Second, the 
complexity of the dependency detection algorithm is mitigated by a practical reduction 
in the number of patterns to be considered at each step. The only patterns considered 
are those that appeared in the execution traces; for the four experiments, the number 
of patterns observed was only four-fifths of those possible. Of those that remained, the 
first step in dependency detection reduced the set by two thirds, and the second step by 
another half. From a practical standpoint, the cost of executing dependency detection is 
fairly low. 

6. Future work 

We have described a technique for identifying and explaining dependencies between a 
planner and its behavior and have applied it to explain sources of failure in the Phoenix 
planner. Obviously, this is just the beginning. We envision three directions for future 
research. First, we intend to expand the definition of dependencies to encompass longer 
time intervals and longer combinations of actions and events. Second, we will examine 
how dependencies characterize environments and explore whether they can be used as 
“markers” for identifying similarities between apparently different environments. Third, 
we will apply dependency interpretation to planners other than Phoenix and behaviors 
other than plan failures. 

6.1. Detect longer dependencies 

Dependency detection is based on the assumption that the most recent precursors 
are most likely to influence which failure occurs next, or to phrase it differently, that 
a precursor’s influence does not persist beyond the next failure. Empirical evidence 
suggests that we probably are missing dependencies by not extending the temporal extent 
of precursors. Unfortunately, the combinatorial nature of dependency detection appears 
to preclude identifying arbitrarily long sequences of significant precursors. Unless we 
gather incredibly long execution traces, we quickly run out of instances of each pattern 
of precursor and failure. Additionally, considering more patterns means consuming more 
computation time. 
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However, the combinatorics of dependency detection are based on searching for a&i- 
trarily long sequences. We can manage the complexity by focusing the search for long 
sequences; rather than searching the execution traces for any pattern of precursor and 
failure, we search for particularly interesting ones. Sets of longer dependencies can be 
accumulated either by controlling the collection of data to selectively test for particular 
dependencies (i.e., experiment design) or by heuristically controlling the construction 
and comparison of dependencies (i.e., supplementing the G test). 

A new experiment design would selectively eliminate recovery methods or plan actions 
to test whether each precipitates or avoids particular failures [6]. For the analysis, 
we would remove an action or recovery method from consideration, which results in 
execution traces free from interactions with the missing action. Consequently, rather 
than examining all possible chains of which some method is a member, dependency 
detection would involve comparing dependency sets generated from execution traces 
with and without each action. By comparing the dependency sets generated in this way, 
one can infer which dependencies were due to interactions with the missing methods. 
For example, if an action, say R,, is removed and the frequency of Fip relative to other 
failures decreases, then the analysis should determine how the Rsp might have produced 
the additional Fip failures: Was Rsp itself producing the failures? Does R, in conjunction 
with other recovery methods, (e.g., R,R,-Fip dependencies) account for the surplus Fip 
failures? Does R, influence Fip over longer intervals? 

Briefly, with the new experiment design, we can determine which of the possible 
explanations account for the additional Fip failures by comparing the counts of particular 
failures, with and without the action, for whether changes in the counts differ uniformly 
and depend on the previous failure. If the counts differ uniformly, then we can conjecture 
that the difference is due solely to the action that was removed; otherwise, we check 
further for how the failure counts compared to the counts when other actions were 
removed, looking for cases where actions behaved similarly (if action X and action Y 
interact, then removing either one should produce similar results). 

Longer combinations require two changes to the application of the G test: determining 
pools and partitions for longer precursors and comparing the results of separate G tests. 
The pool and partitions represent different hypotheses about what is producing the 
observed dependency; for example, does F, influence FY or does F, in conjunction with 
particular recovery methods, say R, and Rb, influence FY? If we consider all possible 
pools and their partitions, then we are faced with a combinatorial algorithm. If we 
consider pools and partitions based on whether one or the other was significant in other 
applications of the G test, then we may use results on smaller chains to determine which 
larger chains to explore. Our intuition suggests that if a set of partitions is found to 
account for little of the variance in a pool, then it is probably not worth looking at longer 
precursors that include the partitions. For example, if Rsp-Fip is favored over F,R,- 
Fip based on a G test, then longer precursors, such as F”R,F.xR,-Fip, are unlikely to 
account for much variance either. To further develop this approach, we need to run the G 
test on pools of pairs (e.g., FR-F) and partitions of triples (e.g., RFR-F ad FFR-F) 
(and probably longer pools and partitions) and test whether the intuition is supported 
by the data. Then, we need to derive heuristics for selecting pools and partitions based 

on the results of previous G tests. 
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Another approach to finding longer dependencies is to rephrase the problem from 
finding all possible long dependencies to finding many highly significant dependencies. 
In this case, we use local search techniques to explore the large space of possible long 
dependencies. By using local search, we will find the strongest of the related dependen- 
cies (and so need not do the pruning step), can easily tune the amount of time spent 
searching by modifying the number of random starts, and can define search operators 
that match our intuition about what constitutes a neighborhood of dependencies. 

Working out the logistics for detecting longer dependencies is the first step toward 
broadening the set of events included in execution traces. Execution traces for FFL4 
include only failures and recovery methods; yet, many other events and actions influence 
the types of failures that occur. Instrumentation is available in the Phoenix system 
to collect other influences (e.g., changes in the weather, initiating new plans, and 
observations of new fires), but currently FRA cannot analyze such execution traces. 
Enhancing dependency detection to consider longer chains means that more events can 
be added to the execution traces without being inundated with possible dependencies. 

6.2. Construct equivalence classes of environments 

Execution traces from the four experiments yielded different dependencies. The de- 
pendencies were not only different, but the degree of difference appears to depend on 
how much failure recovery and the planner differed from one experiment to the next. 
Based on analyzing the execution traces for the Phoenix planner, similar versions, i.e., 
versions that differed by a “single” change in the implementation, of failure recovery 
result in similar sets of dependencies. 

Comparisons of dependencies detected from execution traces of pilot studies sug- 
gest that dependencies are also sensitive to the degree of similarity in the environment. 
Perhaps, some dependencies function as markers for particular characteristics of environ- 
ments. For example, severely resource-constrained environments may be characterized 
by many repetitions of resource contention failures, producing the observed dependency 
that one resource contention failure leads to another. Additionally, failure recovery meth- 
ods that perform short-term load balancing to reduce the contention for one constrained 
resource may simply cause a different type of resource contention failure, producing a 
dependency between short-term load balancing recovery methods and particular types 
of resource contention failures. One would expect these dependencies to appear in any 
type of resource-constrained environment, however superficially different, whether it is 
a transportation planner, an air traffic control system, or a forest fire fighter dispatcher. 
Looking for such markers requires a lingua franca so that dependency sets for differ- 
ent environments can be compared. One option is to describe a hierarchy of failures 
and methods from general classes, such as “resource contention”, to domain specific 
instances (e.g., “bulldozer unavailable” in Phoenix). 

The benefit of constructing equivalence classes of environments is that we can predict 
more easily how a given planner will perform in any environment in the equivalence 
class. From a design standpoint, we can design planners for new environments by 
borrowing heavily from previous designs known to work well in similar environments. 
From a scientific standpoint, we will be able to tell when differences in environments 
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are superficial, allowing us to compare planners with knowledge bases designed for 
different environments. 

6.3. Apply dependency interpretation to other systems 

Applying Dependency Interpretation to other systems means enhancing the other 
systems to collect execution traces and acquiring supportive knowledge specific to the 
other systems. For planners embedded in simulated environments, collecting execution 
traces should be supported by the simulator already; for planners that are not in simulated 
environments, the planner itself may need to be augmented to collect the execution traces. 
Phoenix-specific knowledge is applied at each step of FRA; for a new system, we need 
to acquire two types of knowledge: 

l environment event types and plan actions for the planner, 
l suggestive plan structures and explanations for the new planner. 

The first should be easy because most planners have pre-defined methods for recogniz- 
ing salient environment events. The second is the more difficult. The intuition behind 
suggestive structures is that people who program particular systems have structures that 
they check first when trying to track down bugs or understand why a program behaves 
as it does. For example, with resource contention failures, one would probably look first 
at the structures involved in managing the resources: pairings of reserve/release actions, 
actions that consume resources and decisions about resources and the preconditions on 
those actions. We have recorded some of the structures that are most suspect for the 
Phoenix planner and believe that many of these structures apply equally well to other 
planners. We intend to test this conjecture. 

7. Conclusion 

Part of the challenge of designing new planners is understanding when and why they 
work. The lessons of previous systems are the basis of future designs. Unfortunately, 
as our planners and their host environments become increasingly complex, they become 
increasingly difficult to understand. 

This paper describes our first experiments with a method for understanding the be- 
havior of planners. The approach combines a domain-independent, syntactic technique 
for summarizing behavior and identifying interesting patterns, with a domain-dependent, 
semantic technique for interpreting those patterns. The strength of the approach lies in 
the application of statistical techniques to reduce the tremendous amounts of execu- 
tion information down to salient patterns and in the reliance on weak domain/planner 
knowledge for interpretation. Statistical dependency detection prunes an overwhelming 
and largely uninteresting space of behavioral data, and dependency interpretation ex- 
ploits knowledge of the interactions of small parts of the planner to explain behavior of 
the system as a whole. 

The future of planning depends on our ability to explain the behavior of increasingly 
complex systems. For us, this has meant changing our focus from explaining individual 
decisions in particular planning episodes to explaining statistical anomalies across many 
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episodes. Also, our explanations are not in terms of highly specific state information, but, 
rather, in terms of general plan structures and programming idioms. Consequently, we 
cannot debug the Phoenix planner given only the execution trace of a single planning 
episode, nor can we pinpoint the source of a bug to a particular line of code. Nor 
can anyone else, however. We think it unlikely that anyone will write a program to 
automatically localize bugs in arbitrary complex systems, given execution traces that 
may or may not be buggy. Dependency detection and interpretation, on the other hand, 
find and explain statistical anomalies that might indicate bugs or planners that are 
particularly well designed for their environments, well enough for a programmer to 
easily find previously unsuspected bugs and a designer to extrapolate a good design to 
a new environment. 
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